Combine the fid_monitor, station_monitor, and table_monitor functions together.

monitor_all(data, begin_date, house_width = "1", days, save_path)

Arguments

data

data.frame, required. The input data frame containing the data to be processed.

begin_date

An optional Date object or character string specifying the beginning date for the data to be processed. If not provided, all dates in the data will be considered.

house_width

character, optional. A character string representing the house width. Default is "1".

days

integer, optional. An integer representing the number of days for the analysis.

save_path

character, required. A character string representing the path where the output file will be saved.

Examples

# Load CSV data
data <- data.table::fread("C:/Users/Dell/Documents/projects/pptsdm_data/ppt_monitor_test_data.csv")
monitor_all(data, begin_date = "2024-05-01", days = 5, save_path = "C:/Users/Dell/Downloads/test")
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_col()`).
#> $responder_na
#>     location 06-03 06-04 06-05 06-06 06-07 total_nas
#>       <char> <int> <int> <int> <int> <int>     <num>
#>  1:      501     0     0     0     0     0         0
#>  2:      502     2     1     1     3     2         9
#>  3:      503     0     2     2     0     0         4
#>  4:      504     2     0     2     0     0         4
#>  5:      505     0     0     0     0     0         0
#>  6:      506     0     0     0     0     0         0
#>  7:      507     1     1     1     0     0         3
#>  8:      508     0     0     0     0     1         1
#>  9:      509     0     0     1     0     2         3
#> 10:      510     0     1     2     1     0         4
#> 
#> $extreme_weight
#> Key: <location>
#>     location 06-03 06-04 06-05 06-06 06-07
#>        <int> <num> <num> <num> <num> <num>
#>  1:      501  7.07  4.31  4.12  2.78  5.79
#>  2:      502  5.38  6.86  3.12  6.67  7.32
#>  3:      503  4.82  5.32  6.17  5.19  5.21
#>  4:      504  5.95  3.70  2.41  5.41  3.53
#>  5:      505  1.28  3.37  5.05  4.67 11.30
#>  6:      506  7.69  7.46  4.35  1.28  7.50
#>  7:      507  7.59  3.85  4.29  2.41  8.43
#>  8:      508  1.47  1.37  2.63  1.32  6.10
#>  9:      509  6.84  4.62  4.31  6.78  8.13
#> 10:      510  6.74  3.12  7.58  4.41  8.57
#> 
#> $feed_time_n
#> Key: <location>
#>     location n_06-03 n_06-04 n_06-05 n_06-06 n_06-07 time_06-03 time_06-04
#>        <int>   <int>   <int>   <int>   <int>   <int>      <num>      <num>
#>  1:      501      99     116      97     108     121      17.62      18.14
#>  2:      502      93     102      96      75      82      17.24      16.38
#>  3:      503      83      94      81      77      96      18.15      16.92
#>  4:      504      84      81      83      74      85      18.61      17.66
#>  5:      505      78      89      99     107     115      16.82      17.51
#>  6:      506      65      67      69      78      80      18.65      17.29
#>  7:      507      79      78      70      83      83      17.45      15.67
#>  8:      508      68      73      76      76      82      18.12      17.93
#>  9:      509     117     130     116     118     123      17.97      16.86
#> 10:      510      89      96      66      68      70      19.07      19.84
#>     time_06-05 time_06-06 time_06-07
#>          <num>      <num>      <num>
#>  1:      18.64      18.62      18.54
#>  2:      16.92      16.48      16.30
#>  3:      15.49      15.84      15.86
#>  4:      16.87      17.10      16.49
#>  5:      16.73      17.26      16.33
#>  6:      17.48      19.43      18.44
#>  7:      15.85      15.88      16.28
#>  8:      17.49      18.09      17.18
#>  9:      17.39      17.98      16.58
#> 10:      17.89      18.17      17.72
#> 
#> $low_feedintake
#>    location responder 06-03 06-04 06-05 06-06 06-07 sum_feedintake
#>       <int>     <int> <num> <num> <num> <num> <num>          <num>
#> 1:      507   2315012    NA    NA    NA 0.029 0.003           0.03
#> 2:      502        NA 0.081 0.046 0.056 0.087 0.027           0.30
#> 3:      510        NA    NA 0.048 0.208 0.014    NA           0.27
#> 4:      503        NA    NA 0.212 0.022    NA    NA           0.23
#> 5:      509        NA    NA    NA 0.010    NA 0.152           0.16
#> 6:      504        NA 0.026    NA 0.023    NA    NA           0.05
#> 7:      507        NA 0.010 0.010 0.010    NA    NA           0.03
#> 8:      508        NA    NA    NA    NA    NA 0.010           0.01
#> 
#> $all_feedintake
#> Key: <location>
#>     location 06-03 06-04 06-05 06-06 06-07 all_feedintake
#>       <char> <num> <num> <num> <num> <num>          <num>
#>  1:      501 41.30 43.52 46.97 45.56 46.34         223.69
#>  2:      502 46.95 46.13 49.73 46.41 50.10         239.32
#>  3:      503 51.22 49.40 47.49 48.06 48.47         244.65
#>  4:      504 48.68 49.71 48.49 48.85 47.98         243.70
#>  5:      505 43.64 46.99 47.73 47.40 44.47         230.23
#>  6:      506 47.60 46.10 45.98 50.43 47.72         237.83
#>  7:      507 44.87 41.04 43.98 43.24 44.58         217.71
#>  8:      508 44.22 45.83 43.71 44.74 43.99         222.50
#>  9:      509 48.30 48.09 51.44 50.91 50.07         248.80
#> 10:      510 43.86 47.92 44.62 44.72 46.01         227.12
#> 
#> $mean_feedintake
#> Key: <date>
#>      date 5_feed all_feedintake   5_n 5_mean_feed
#>    <char>  <num>          <num> <int>       <num>
#> 1:  06-03 460.51         460.51   147        3.13
#> 2:  06-04 464.41         464.41   146        3.18
#> 3:  06-05 469.79         469.79   145        3.24
#> 4:  06-06 470.22         470.22   146        3.22
#> 5:  06-07 469.56         469.56   146        3.22
#> 
#> $house_weight
#> Key: <date>
#>      date house_5
#>    <char>   <num>
#> 1:  06-03   75.08
#> 2:  06-04   76.42
#> 3:  06-05   77.64
#> 4:  06-06   79.34
#> 5:  06-07   80.61
#> 
#> $visit_n_hour
#> Key: <location>
#>     location     0     1     2     3     4     5     6     7     8     9    10
#>        <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1:      501     3     5     4     4     4     3     4     9     5     5     8
#>  2:      502     4     1     3     4     1     2     4     4     4     4     4
#>  3:      503     2     7     4     3     1     3     3     3     4     2     7
#>  4:      504     4     4     1     5     1     2     3     3     3     5     4
#>  5:      505     5     9     4     3     2     4     4     2     4     5     3
#>  6:      506     3     4     2     3     1     1     3     2     4     2     4
#>  7:      507     4     1     5     3     1     2     3     5     4     3     3
#>  8:      508     5     3     1     4     3     3     3     3     4     2     3
#>  9:      509     3     5     5     1     3     2     2     4     6     4     3
#> 10:      510     3    NA     3     2     3     2     1     3     2     3     3
#>        11    12    13    14    15    16    17    18    19    20    21    22
#>     <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1:     4     4     6     4     9    10     6     6     4     5     3     2
#>  2:     3     3     4     5     5     5     4     5     5     4     1     5
#>  3:     5     4     4     4     4     5     7     5     4     4     1     6
#>  4:     5     3     5     3     9     4     5     3     4     2     1     3
#>  5:     8     7     6     6     6     7     8     6     4     5     4     1
#>  6:     6     2     4     6     3     5     4     3     3     4     5     5
#>  7:     6     5     7     3     4     5     5     4     4    NA    NA     5
#>  8:     5     4     3     3     6     5     4     3     3     4     4     3
#>  9:     8     5     5    10     8    12     4     7     3     7     9     3
#> 10:     3     4     2     3     7     5     3     3     2     3     4     2
#>        23
#>     <int>
#>  1:     4
#>  2:    NA
#>  3:     4
#>  4:     3
#>  5:     2
#>  6:     1
#>  7:     1
#>  8:     2
#>  9:     6
#> 10:     4
#> 
#> $feed_time_hour
#> Key: <location>
#>     location     0     1     2     3     4     5     6     7     8     9    10
#>        <int> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#>  1:      501  9.57 33.95 48.88 59.77 34.53 36.38 50.50 41.57 52.70 55.47 48.17
#>  2:      502 36.35 12.25 37.57 53.27 11.37 18.67 36.13 62.23 42.80 49.67 48.58
#>  3:      503 18.97 39.23 40.38 21.13  6.62 29.62 50.40 41.62 71.25 23.22 50.48
#>  4:      504 33.45 56.98  7.00 68.78 12.65 25.65 34.40 28.45 36.30 60.68 56.87
#>  5:      505 30.82 34.20 17.30 25.02 18.45 46.52 52.07 21.17 45.72 74.60 44.17
#>  6:      506 66.65 50.72 16.48 31.30  8.08 18.82 58.05 47.10 57.83 46.55 54.50
#>  7:      507 41.03 13.78 51.38 44.87 20.98 28.35 39.22 56.10 45.87 49.72 40.87
#>  8:      508 48.92 21.32  6.23 29.35 47.57 70.88 40.70 41.55 50.60 45.07 34.77
#>  9:      509 31.62 78.10 18.28 13.12 26.80 14.27 27.50 66.20 48.47 56.48 53.45
#> 10:      510 20.72    NA 58.38 30.07 59.98 47.35 12.75 55.05 42.08 57.80 54.02
#>        11    12    13    14    15    16    17    18    19    20    21    22
#>     <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#>  1: 60.68 48.07 48.53 51.03 52.95 43.55 64.73 60.97 55.23 45.68 49.97 21.82
#>  2: 45.80 25.98 51.55 58.68 61.32 56.58 64.05 47.82 65.83 41.63  6.27 43.73
#>  3: 40.33 21.33 50.57 64.28 55.67 48.55 54.83 62.55 41.50 53.48  5.27 45.27
#>  4: 60.58 41.45 68.10 47.85 44.65 60.88 56.72 51.77 46.52 19.98  4.45 23.38
#>  5: 40.10 48.08 32.12 52.98 57.20 44.18 57.08 67.37 56.15 63.82 33.68  1.47
#>  6: 73.53 50.00 50.40 76.15 42.93 58.73 62.28 56.82 58.42 50.52 42.28 27.53
#>  7: 53.45 39.77 44.08 61.90 59.02 59.58 51.63 63.30 54.67    NA    NA 48.00
#>  8: 71.40 58.88 55.20 19.07 56.52 55.00 74.32 52.77 45.13 30.10 28.83 25.30
#>  9: 60.33 32.93 46.25 58.73 50.37 63.55 49.32 70.85 42.20 34.58 34.50  7.27
#> 10: 53.03 79.35 35.85 58.28 66.23 54.53 67.92 48.00 25.55 32.32 40.65 27.12
#>        23
#>     <num>
#>  1: 37.85
#>  2:    NA
#>  3: 15.00
#>  4: 41.63
#>  5: 15.62
#>  6:  0.83
#>  7:  9.15
#>  8: 21.32
#>  9: 15.37
#> 10: 36.28
#> 
#> $feed_intake_hour
#> Key: <location>
#>     location     0     1     2     3     4     5     6     7     8     9    10
#>        <int> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#>  1:      501  0.40  1.10  2.05  2.18  1.90  1.41  2.23  2.26  1.85  2.29  2.13
#>  2:      502  1.73  0.81  1.80  2.45  0.53  1.00  1.76  3.04  1.86  2.58  2.39
#>  3:      503  0.84  1.90  2.20  1.07  0.31  1.37  2.44  2.53  3.84  1.01  2.41
#>  4:      504  1.32  2.61  0.35  3.07  0.72  1.52  1.75  1.34  1.66  2.63  2.85
#>  5:      505  1.29  1.16  0.56  1.21  0.89  2.02  2.39  0.97  2.24  2.87  2.32
#>  6:      506  2.60  2.15  0.72  1.43  0.47  0.66  2.44  2.02  2.72  2.09  2.13
#>  7:      507  1.73  0.60  2.06  2.28  0.82  1.35  1.88  2.61  1.94  2.10  1.48
#>  8:      508  1.81  0.80  0.19  1.09  2.23  3.16  1.59  1.97  1.99  1.92  1.21
#>  9:      509  1.55  4.37  1.29  0.80  1.32  0.45  1.22  3.39  2.64  2.89  2.88
#> 10:      510  0.82    NA  2.50  1.27  2.87  1.63  0.54  2.55  1.76  2.52  2.54
#>        11    12    13    14    15    16    17    18    19    20    21    22
#>     <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#>  1:  2.28  1.94  2.48  1.78  2.20  1.51  2.42  2.71  2.80  2.26  2.27  0.80
#>  2:  2.19  1.50  2.63  2.89  2.98  2.89  3.69  2.80  3.33  2.38  0.36  2.50
#>  3:  1.92  1.13  2.52  3.35  3.10  2.25  3.01  3.18  1.96  2.48  0.21  2.52
#>  4:  2.91  2.38  3.44  2.35  2.11  3.10  2.93  2.80  2.17  0.88  0.28  1.02
#>  5:  1.47  2.22  1.67  2.65  2.06  2.15  1.64  3.80  3.38  3.34  1.44  0.08
#>  6:  3.11  1.73  2.24  3.74  1.47  1.79  3.10  2.63  3.00  2.27  1.91  1.30
#>  7:  2.43  2.05  1.60  2.75  2.82  2.41  2.75  3.26  3.07    NA    NA  2.02
#>  8:  3.38  2.73  2.04  0.87  2.19  2.23  3.39  2.64  2.18  1.21  1.39  0.84
#>  9:  3.29  1.44  1.73  2.42  2.29  2.67  3.44  3.86  1.83  1.59  1.53  0.40
#> 10:  2.24  3.77  1.20  2.77  2.19  2.42  3.39  2.52  1.06  1.61  1.62  0.91
#>        23
#>     <num>
#>  1:  1.07
#>  2:    NA
#>  3:  0.90
#>  4:  1.79
#>  5:  0.64
#>  6:  0.02
#>  7:  0.56
#>  8:  0.92
#>  9:  0.81
#> 10:  1.30
#>